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m: Short synthetic approaches to optically active, cis and trans dideoxynucleoside analogs of the D- 
and Lapiose family have been developed. The chiral pmcursor for the syntheses was the enzymatically 
prepared compound, S(->2-Q-propenyl)-13-propanediol monoacetate (5). 

A few dideoxynucleosides, through inhibition of HIV-encoded reverse transcriptase (RT). have proven to be 

effective pro-drugs for clinical use in the treatment of AIDS. t The design and evaluation of additional novel 

nucleoside-based RT inhibitors are needed in order to develop analogs that exhibit a more favorable toxicity 

profile and are less susceptible to the development of resistant strains of HIV? One essential feature in the 

design of these inhibitors is retention of the 2’.3’-dideoxygenation which is necessary for termination of the 

viral DNA chain elongation. The most common modification of dideoxynucleosides has been strategic 

substitution on the carbohydrate moiety (i.e. axido and fluoro). 3*4 A more recent trend in design has been 

antiviral dideoxynucleosides with no heteroatom or an additional heteroatom within the carbohydrate moiety.s-10 

An alternative approach involves dideoxygenated nucleosides that contain transposed heteroatoms*r”3 and 

are regioisomeric with respect to dideoxy analogs of the natural nucleosides. 9-(B-D-Apio-D- 

furanosyl)adenine, a biologically-active, relatively non-cytotoxic nucleoside’e’7 related to natural D-apiose,‘* is 

a regioisomer of adenosine through transposition of the C-4’ hydroxymethyl to C-3’. We wish to report on the 

stereoselective synthesis of the complete family of 2’,3’-dideoxygenated nucleosides (1 and 2) related to apio 

nucleosides as potential inhibitors of HIV replication. This study is supported by the observationI that one 

member of Class 2 has been reported to have anti-HIV activity in MT-4 cells with no apparent toxicity. 

2 

The key precursor for the construction of the dideoxyapiose ring was a derivative of the optically pure 

aldodiol system 3, the cyclization of which in one direction creates the carbon bearing the C%OH of R- 

stereochemistry and in the other direction of S-stereochemistry. This approach allows a shorter synthetic route 

7639 



7640 

than one involving D- or L-apiose and would avoid potential problems such as racemization associated with the 

deoxygenation of the C-3 tertiary hydroxyl group of apiose. The starting compound for the enantioselective step 

to the chiral precursor 519.20 was 2-(2-propenyl)-1.3~propanediol diacetate (4). prepared in two steps (reduction 

followed by acetylation) from diethyl allylmalonate in 80% overall yield (Scheme 1). Stereoselective 

deacetylation with the lipase from Cundida cylindruciu (Sigma, Type VII) afforded the S-(-)-monoacetate of 

2-(2-propenyl)-13-propane&o1 (g) ([a],= -8.0”. CHClJ in a 50% yield (99% ee). Treatment of 5 with t- 

butyhhmethylsilyl chloride followed by deesterification gave the R-(+)6 ([a],= +3.7”, CHClJ in 96% overall 

yield for the two steps. For the key transformation, the formation of the 2.3~dideoxy-D-apiofuranosyl system 

from 6, a variety of .conditions were examined. The most successful method was the oxidative cleavage of the 

olefin employing OsO,/NaIO,. Thus, treatment of 6 with 0~0, and NaIO, provided 7 almost quantitatively as 

an anomeric mixture ([a],= +24“. CHCl,) which, upon acetylation, gave the corresponding 1-O-acetyl-3’-O-(t- 

butyldimethylsilyl)-2,3dideoxy-D-apiose (8) in a 78% yield. Trimethylsilyl nitlate promoted condensation2’ 
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, imidazole (1.2 
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bis(trimethylsilyl)acetamide (1. -2.6 es). 
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of 8 with silylated Ns-benxoyladenine, generated h g& gave a 3:2 (a$) diastemometic mixhue of anomeric 

adenine isodideoxynucleosides in 43% yield. Separation by preparative layer chromatography and quantitative 

deprotection of the individual anomers provided 9-(2,3-dideoxy-p-D-apiofuranosyl)adenine (9) ([a], = -22.6”, 

MeOH) and the corresponding 9-(2,3dideoxy-a-D-apiofuranosyl)adenine anomer ([a$, = +39.8”, MeOH). 

Assignments of the anomeric configurations were madily determined through ‘H NMR NOE difference 

SpeCmJscoPY. 

Under similar conditions, the persilylated bases of N2-acetyl-06diphenylcarbamoylguanine, uracil, cytosine, 

and thymine were coupled with the acetylated dideoxyapiose 8. Separation of the resulting a and p anonazs 

and deprotection gave the 2’3’~dideoxy-BD-apiofuranosyl nucleosides 1913. In the case of the cytosine and 

thymine apiosyl nucleosides. the separation is more laborious due to a small difference only in R, values 

between the anomers. 

The nucleosides of the 2,3-dideoxy-L-apiofuranosyl series (Scheme 2) were similarly obtained from the 

chiral precursor 5. When 5 was treated with OsO,/NaIO,, followed by acetylation, 14 was formed in 63% yield. 

Glycosylation with the appropriate silylated aglycon, diastereoisomer separation, and deprotection provided the 

2’,3’dideoxy-u-L-apiofuranosyl nucleosides 15-19. 
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The compounds of these apio dideoxynucleoside families am resistant to enzymatic deamination (e.g. 

the substrate activity of 9 towards mammalian adenosine deaminase is 0.12% compared to adenosine. Studies 

of the relative rates of glycosidic bond hydrolysi? show that these compounds are slightly more stable than 

2’,3’dideoxynucleosides (e.g. compound 9 is hydrolyzed at 84% of the rate of 2’,3’dideoxyadenosine at pH 3). 

Comprehensive antiviral studies are currently in progress and those results will be reported elsewhere. 
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